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Abstract

A semi-analytical method is developed for the analysis of deformation and three-dimensional stress field in rotating
annular disks made of cylindrically orthotropic nested rings. The method is based on a layerwise theory and the Ham-
ilton principle. The proposed method is applied to calculate in-plane and out-of-plane stresses in a rotating disk made
up of two nested rings that is rigidly fixed (or free) at the inner boundary and is free at the outer boundary. The com-
puted results are compared with those obtained from the finite element method. It is found that because of discontinuity
of material properties, the stress field is three-dimensional at the interface of two rings.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Rotating disks have a wide range of applications as energy storage devices and for gyroscopic control of
ships, submarines, aircrafts, rockets, and missiles. Also rotating disks have engineering applications such as
high-speed gears and turbine rotors.

Contrary to the aforementioned numerous applications, little research effort has been devoted so far for
development of the theoretical or numerical models for predicting accurate stress analysis in rotating disks.
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Timoshenko and Goodier (1970) analyzed a constant-thickness rotating isotropic disk as a three-dimen-
sional problem. Lekhnitskii (1981), Reddy and Srinath (1974), Gurushankar (1975), Christensen and Wu
(1977), and Genta and Gola (1981) determined stresses by using elasticity approaches in orthotropic sin-
gle-ply circular plates with stress-free outer boundary. Bert (1975) used a classical lamination theory on
layered plates with extension-bending coupling and with stress-free boundaries. Tutuncu (1995) obtained
stresses and deformations resulting from centrifugal forces in rotating especially orthotropic circular plates
using the classical lamination theory to illustrate the effect of anisotropy on stresses. Although the sym-
metric cross-ply and balanced laminates were considered, the displacement field was only function of the
radial coordinate. Furthermore, Tutuncu (1998) analyzed interlaminar stresses in generally polar-aniso-
tropic circular plates due to the uniform change in temperature. It is to be noted that the analysis was
based on the plane stress state assumptions with rotational symmetry. Tutuncu (1998) showed that
increasing in the number of circumferentially wound laminae increased the strength of the laminate
against thermal loads. Durodola and Attia (2000) studied the potential benefits of using fiber-reinforced
functionally graded materials for rotating hollow and solid disks. Jain et al. (2000) studied singularity in
rotating polarly orthotropic disks, shallow shells, and conical shells. They (Jain et al., 2000) observed that
there is no singularity when the ratio of tangential to radial modulus of elasticity is equal or greater than
one.

Recently Arnold et al. (2002) analyzed the problem of a rotating disk in the form of a single disk or a
number of concentric disks forming a unit. Their analytical model is capable of performing an elastic stress
analysis for various disk systems subjected to pressure surface tractions, body forces, and interfacial misfits.
They (Arnold et al., 2002) presented key design variables of disk systems and their associated influence. It
should be mentioned here that the analysis was performed based on the plane stress assumption.

Foral and Newhouse (1980) investigated the performance of hoop wound composite flywheel rotors.
Performance measurements used in this study were energy stored per unit swept volume, per unit rotor
weight, and per unit material cost. They explained that of the many configurations available in composite
rotor design, a very attractive, easily fabricated one is the simple hoop wound rotor, with continuous fila-
ments circumferentially wound in an epoxy matrix. Moreover, they mentioned that an additional approach
uses a multiple material design where the rotor is constructed with nested circumferential rings, each with a
different structural material. Properly selected material combinations can produce significantly increase in
energy storage capacity.

It is well known that the stress field is three-dimensional (3-D) in regions of geometrical or material dis-
continuities. Based on the results obtained by Tutuncu (1998) and Foral and Newhouse (1980), the present
study deals with a semi-analytical solution of 3-D stress field in disks constructed with nested circumferen-
tially fiber-reinforced composite rings. It is assumed that at the inner boundary the plate is fixed (or free)
and at the outer boundary is free of stress. To obtain accurate results, a layerwise theory (LWT) is used to
model the problem. The results obtained from this theory will be compared with those obtained by using
the finite element method.

2. Theoretical formulation

As it is pointed out, based on the work done by Tutuncu (1998) and Foral and Newhouse (1980), of the
many configurations available in composite rotor design, a very attractive, easily fabricated one is the sim-
ple hoop wound rotor, with continuous filaments circumferentially wound in an epoxy matrix. Therefore, it
is intended here to accurately determine the full 3-D stress distribution in circumferentially wound disks
with inner and outer radii R{=R;) and Ro(=R,s+), respectively, rotating with a constant angular velocity
. The disk is made up of M discrete, nested rings, each with inner and outer radii R; and R;{, respectively,
and of a single specified material of mass density p; (see Fig. 1).
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Fig. 1. Schematic of M concentric annular disks.

2.1. Displacement field and strains

As mentioned previously, the full layerwise laminate theory of Reddy (see, e.g., Nosier et al., 1993;
Tahani and Nosier, 2004) is used to obtain accurate 3-D stress field in the disk. The displacement field
in this theory may be written as

ur<r7 H,Z, t) = Uk(r? t)(pk(z)
wo(r,0,2,0) = 0 k=1,2,... N+1 (1)
uz(ra O,Z, t) = Wk(r7 t)(pk(z)

where, for the sake of brevity, the Einstein summation convention has been introduced-a repeated index
indicates summation over all values of that index. In Egs. (1) u,, uy, and u. represent the displacement com-
ponents in the r, 0, and z directions, respectively, of a material point located at (r, 0, z) in the undeformed
disk (see Fig. 1). Also Uy(r, t) and Wi(r, t) (k=1,2, ..., N+ 1) represent the displacement components of
all points located on the kth numerical plane in the r and z directions, respectively, in the undeformed disk
and @(z) are continuous functions of the thickness coordinate z (global interpolation functions). For linear
variation through each numerical layer these functions are defined as

0 z < Zpy
: 1 <z<
By(z) = %*@ ASESE 12, N+ 2)
¢, (2) Zr L Z < Zgy
0 z = Zj41

In Eq. (2) ¢, (=1, 2) is the local (i.e. layer) linear Lagrangian interpolation function associated with the
jth node of the kth layer that defined as

¢1_Zk+1—Z Z = Zk
L=

2 _
hk ’ (rbk - hk (3)

where /i is the thickness of the kth numerical layer and z; denotes the z-coordinate of the bottom of the kth
numerical layer. In this model, it is assumed that a ring is constructed of N numerical (or mathematical)
layers with the same material properties. Clearly, as the number of numerical layers is increased, the
accuracy of the results in the z direction is also increased. It is worth noting that, since the rings are
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circumferentially wound the problem is an axisymmetric one and, therefore, there is no displacement in the
0 direction. Hence, all the functions appear in Eqs. (1) are independent of variable 0.

Upon substitution of Egs. (1) into the linear strain—displacement relations (Fung, 1965) of elasticity, the
following results will be obtained:

1 [
& = %qjlm &9 = _Uk(pkv & = Wk&
or r dz (4)
1 do, ow,
0 = & = 0, rz T o
Erp &p, & b <Uk dz + or k>

It is to be noted that the strains in Eq. (2) are discontinuous at the layer interfaces because of the layerwise
definition of the functions @,(z). Hence, the theory assumes separate displacement field expansions within
each material layer that exhibits only C°-continuity through the thickness of the circular plate. Therefore,
the resulting strain field is kinematically correct specially when the number of numerical layers is increased.
Thus the in-plane strains are continuous through the laminate thickness and at the same time the transverse
strains are piecewise continuous at the ply interfaces. That is, it is possible in this theory to analyze hoop
wound composite disks constructed with nested circumferential rings and at the same time each ring could
be laminated by different materials.

2.2. Equations of motion
The Hamilton principle for an elastic body is (Fung, 1965):
5}
/ (U + 6V —dT)dt =0 (5)
n

where 8 U is the variation of the total strain energy, 6 is the variation of the potential energy of the applied
forces on the external surfaces of the disk, and 387 is the variation of the total kinetic energy. That is

Rt h/2
U = 27:/ / (0,06, + aydey + 0.0¢, + 20,.0¢,, )rdzdr
R; —h)2

"Riy1 ;.
=2 / {[(er),r — M§ — rQf8U + [(RY), — rN';]SWk}dr +2n[rMESUL]

r=R;
R;

+2m[rRES W) T (6)

r=R;

where the generalized stress resultants are defined as

h/2
(Mf’MI(;’R/;) = / (Gra gy, 0,-2)45de
—h/2
7
k _ k2 ddsk ( )
(Nz7QIr{) - (O—zao—rz)—dz
—h/2 dz

It is to be noted that in the layerwise theory each physical layer can be divided into a number of numerical
layers and within each numerical layer, on the other hand, the quantities Mff and M’ ’(j do, in fact, represent
moments. For this reason, in this study, the symbol M is used for the generalized stress resultants M* and
Mj. Also 8V is given by

h/2
3V = —/ / (G,0u, + 7,.6u,)dzds (8)
r J-

h/2
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where 6, and &, are the specified stress components on the inner and outer boundaries of the disk. Substi-
tuting for du, and du. from Egs. (1) into Eq. (8) results in

r=R; r=Ri

" on {rﬁfSWk} )

r=R;

h/2 x .
8V =—2n / (G, 98U + 6.9 3W,)[[—x dz = —2n [erBUk]
—h/2

r=R;

It is to be noted that here Wr and ﬁf are obtained by substituting ¢,(= ¢,) and 0,.(= 6,.), respectively, into
the definitions of stress resultants M* and R* as given in Egs. (7).

Next, in order to obtain 87, the position vector of a material point in cylindrical coordinate and its time
derivative (i.e., velocity) are noted to be

F=(r+u)é + (z+u)é., 0=i,é + (r+u,)wé)+ i.é. (10)

Since it is assumed that the disk rotates with a constant angular velocity (or the angular velocity is increased
slowly), the problem is not time dependent and the variation of the total kinetic energy can be written as

t t Rit1 h/2
/ 8T dt = 27t/ / / 0; (060, + vydvy + v,0v,)rdrdzds
1 0 Ri -

/2
I3 Riyi — e
:21‘c/ / (I'ro*dU; + 17 0*U,8U;)rdrdt (11)
f R
where
o )2
I,1°) = Pi(Pi, P D;)dz (12)
—h/2

Lastly, substituting Egs. (6), (9), and (11) into Hamilton’s principle in Eq. (5) yields the equations of motion
for the ith ring:

dMm* m* — Mt - iy
Uy : d"—l—VTO—Q';:—Ikrwz—Ik]U,-w2
p _
13
. AR 1 . (13)
SWE: =L+ -RE N =0
dr r

The primary variables (i.e., generalized displacements) and secondary variables (i.e., generalized forces) of
the present LWT are:

Primary variables : U, Wi (14)
Secondary variables :  rM* 7R

It is noted that, when the disk becomes extremely thin, the radial displacement becomes constant through
the thickness of the disk. In such a case it suffices to model the physical layer by one numerical layer. In
other words, is such a case Eqgs. (13) will represent two equations which when added to each other will give
us the classical equilibrium equation (which is based on the assumption of radial displacement being con-
stant through the thickness).

In order to find the displacement equations of motion, it is assumed that the disk is constructed with

cylindrical orthotropic rings. The linear constitutive relations for the kth orthotropic lamina with respect
to the disk coordinate axes (see Fig. 1) are given by (Herakovich, 1998):
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o )Y [Cn € €5 0 0 079 e ¥

o, Cpp Cxn Cyy O 0 0 &

0. _ Ciz Cy Ciz 0 0 0 & (15)
Oy 0 0 0 Cu4 O 0 2¢,,

0, 0 0 0 0 Cs5 O 2¢p,

o0 (0 0 0 0 0 Cu) |26

where C are the material stiffnesses of the kth layer. It is noted that if each ring is constructed of a single
matenal we have N numerical layers through the thickness with the same material properties. Upon sub-
stitution of Egs. (4) into (15) and the subsequent results into Egs. (7), the stress resultants are obtained
which can be presented as follows:
. S 1, o+ o o
(N§7M57M§) = (lelglel(jlkaj)UjJ‘ +- (szlgleljzv IJ)U + (AngvB]1q37Bl2{j3)W/ (16)
(Ql;7R]:) = (AlsgévB )U + (Bg;vD /)W

where the rigidity terms are given by

Zl+l
(AZIyBkj ij Z/ (ddSk j d)k dc{ij ‘DA¢ ) dZ (17)

Finally, substituting Egs. (16) into Egs. (13) yields 2(N + 1) equations of motion corresponding to 2(N + 1)
unknowns U; and W

dU; 1, du; (1 aw; 1 o ki
R (F—ZD’;HA?S)U v - B, = (@ P00
o wdU; 1 d’w dw;
(B — Bis)—g 2+~ (B% — B)U, + D~ +— D=3 = A%W; =0

(18)

3. Semi-analytical solutions

Here, in this section, a semi-analytical method will be used for solving Egs. (18). In this method, each
physical ring is divided into a large number of numerical (or mathematical) rings and it is assumed that
the variable coefficients in Eqgs. (18) are constant in each numerical ring (see Fig. 2). This way, Eqgs. (18)
for the m th numerical ring may be written as follows:

- d*U; du; 1 . . dw. 1 .. A - "
k, kj k, k, ik k, k k Kk
DG+ DU~ (D 4) U+ (B = BE) S (B~ B, =~ (P + 10 )o?
. L dU; 1 . Ew. 1 dw, -
k k k k kj kj k,
(Bs'/s_BJn) dr +r (sts_szs)U/"'Dsls dr > + Dsls dr A3J3Wj:0

(19)

It is seen that the variable r in the coefficients of Eqgs. (18) is replaced by the mean radius of mith ring (r,,).
Hence, in each numerical ring we have a system of two coupled second-order ordinary differential equations
with constant coefficients.
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Fig. 2. Numerical rings in the ith physical ring.

The numerical results indicate, however, that there exist repeated zero roots (or eigenvalues) in the char-
acteristic equation of the set of equations in (19). In order to enhance the solution scheme of these equa-
tions, some small artificial terms will be added to these equations so that the characteristic roots become all
distinct (see Tahani and Nosier, 2004). Therefore, Eqs. (19) for the mth numerical ring are rewritten as
follows:

d*U, du; 1 dw, 1 . :
kj kj k. k
DG+ g (G D A% ) Uy (8 — B S (8~ B,
—(I'r + 17U ) 0* + 49U, (20)
v, 1 . . d&w, 1 dw; . _
ik k, k kj kj k
(BY, — B~ P +7(sts—sz3)Uj+Dsjs Pl +7D5/5 P —AZW; =W,

where, here, for convenience « is assumed to have the following form:

h/2
ot = oc/ P, P;dz (21)
—h/2

with o being a prescribed number such that «*”s in Eq. (21) are relatively small compared to the numerical
values of stiffnesses A"’ (pg = 33, 55) and DY /R2 It should be mentioned here that o* is chosen to have a
form similar to the mass terms Ik’ appearing in the equations of motion of laminated plate within Reddy’s
LWT, with the density function p appearing in I being replaced here by the small parameter o (see Nosier
et al., 1993). This way the solution of the equations in (20) will extremely be insensitive to the small number

chosen for the parameter «. Next, in order to solve Egs. (20), for convenience the following state space vari-

ables are introduced:
™ dz ™
-]

dr
where, for example,

{2} = Uy, Uy, ..., Uy ™ (23)

with {Z,}" through {Z,}"" being defined similarly as in (23). Substitution of Eqgs. (22) into Egs. (20) re-
sults in a system of 4(N + 1) coupled first-order ordinary differential equations which may be presented as

@O = W, (20 =T
{dr} (22)

. i Ak
B = oy, 1z - {7 -
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{%}w = [4]"{Z}" + {F}" (24)
where
(23" = {2} {2, {253 {247 (25)

In Eq. (24) the coefficient matrix [4]” and vector {F}"™ are given in Appendix A. The general solutions of
Eq. (24) are given by

{Zy" = U™ [0 " {KY"™ = (|4 " {F}" (26)
where
[0(r)]" = diag(e”, e, ..., M) (27)

with {K}" being 4(N+ 1) arbitrary unknown constants. In Egs. (26) and (27) [U]"” and A
(k=1,2,...,4(N + 1)) are, respectively, the matrix of eigenvectors and eigenvalues of the coefficient ma-
trix [4]"” which, in general, must be regarded to have complex values.

Next, it is assumed that the complete disk, composed of several nested physical rings, is divided into m
numerical rings. For each of them, there exists a boundary-value problem as in Egs. (20) with the solution
in Eq. (24). Therefore, there are 4m(N + 1) unknown constants of integrations. In order to determine these
constants, the following continuity and equilibrium conditions at the interfaces of physical or numerical
rings must be satisfied:

The displacement continuity conditions:

Uil = Uk'r:rmﬂ*(m%l’ Wl‘lr:r,ﬁ% = Wil ] (282)

— tm
r=rm+3 k F=I'm+1—"3

The stress equilibrium conditions:

k _ k k
M, |r:rm+% - Mr| —imtls Rr‘|

w =R (28b)

r=rm+5 r=rm+1—"3

r=rpg

where ¢, is defined in Fig. 2. Using the definitions of stress resultants in (16), the continuity and equilibrium
conditions in Egs. (28a) and (28b) are readily presented as

[B](m){z}<m) = [B](m+1){Z}(n1+l)

1
r=rm+4

(29)

— tm+1
=1 =5

where [B]"™ is given in Appendix A and [B]""" is defined similarly.

In order to satisfy the conditions in (29), it is appropriate to use the transfer matrix method to save some
computational time. Thus, we substitute Eq. (26) into Eq. (29) to obtain

(€7 {KY ™ = [V {RY )+ (D) — (D) (30)

In Eq. (30) the coefficient matrices [C]™ and [C]""" and vectors {D}"™ and {D}"" "V are presented in
Appendix A. Eq. (30) may be rewritten as

{RY™ =[S Ry (T (31)
where
s = ([ " pepy

(7} = (7)™ (DY — (D} 2
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Eq. (31) may be written for each numerical ring (m = 1,2,...,m) as follows:
Ky = [5){Ky @ + {7}
(K} = 52K} + {1}

(33)
(KY = (5] K (T
Hence, by the process of elimination, we can express {K}" in terms of {K }(ﬁ’) as
(K} = [SHK}Y" +{T} (34)

where the transfer matrix [S] and vector {7’} are given in Appendix A.

In addition to the continuity and equilibrium conditions at the interfaces of adjacent physical and
numerical rings, the boundary conditions at » = R; and r = Ro must be satisfied. The clamped and free
boundary conditions are defined as follows:

The clamped conditions:

Ui=W,=0 (35a)
The traction free conditions:

ME=RE=0 (35b)
The boundary conditions in Egs. (35a) and (35b), for example, in a CF (clamped at r = Ry and free at
r = Ro) disk, using Eq. (26) may readily be presented as

BV UV QR K = B ([ {FYY (36a)

[BC]™ U™ [Q(Ro)] " {K}™ = [BC)™ (l4] )" {F}™ (36b)

In Egs. (36a) and (36b) the coefficient matrices [BC]" and [BC) ™ are presented in Appendix A. Next, sub-
stitution of Eq. (34) into (36a) results in

BC VUV o)V ISHKY ™ = B (14 {FYY — [BC VUV [0(R)] Y {T) (37)

The constants of integration {K }('”> are determined from Egs. (36b) and (37). The other constants of inte-
gration {K}", {K}¥ .. {K}"" are then determined by using Eq. (31).

4. Numerical results and discussions

In what follows two numerical examples are considered. It is assumed that the hybrid rotating annular
disk is constructed of a Kevlar/epoxy ring shrink-fitted over an S-2 glass/epoxy ring and that both rings are
circumferentially wound. The inner and outer radii of the disks are Ry =5 h and Ro = 10 h, respectively,
with 4 =0.01 m and it is assumed that the disks rotate with a constant angular velocity w = 1000 rad/s.
These small radii (relative to the disk thickness) are purposefully chosen so that the stress distributions
can be shown easily without any need to zoom the plots. In this study, only the stress field resulting from
centrifugal forces is calculated. Obviously, by superposition one can obtain the total stress field due to pre-
stresses during fabrication and inertial forces. The material properties of Kevlar/epoxy in the principal
material coordinate system are taken to be (Herakovich, 1998)



2750 M. Tahani et al. | International Journal of Solids and Structures 42 (2005) 2741-2754

E] =76.8 GPa, Ez =E3 =5.5GPa
G12 = G13 =2.07 GPa, G23 = 1.4 GPa (38)
Vip = Vi3 = 0347 Vo3 = 0377 P = 1380 kg/l’l’l3

Also the material properties of S-2 glass/epoxy in the principal material coordinate system are assumed to
be (Herakovich, 1998):

E, =43.5GPa, E, =F;=11.5GPa,
G12 = G13 =345 GPa, G23 =4.12 GPa (39)
Vip = Vi3 = 027, Vo3 = 04, p = 2000 kg/m3

where the subscripts 1, 2, and 3 indicate the on-axis (i.e., principal) material coordinates.

It is noted that in the LWT each actual physical layer can be treated as if it is made of several layers.
These rather imagined layers are often referred to as numerical (or mathematical) layers (see Tahani and
Nosier, 2004). Clearly, as the number of numerical layers is increased, the accuracy of the results is also
increased. In the present analysis, the out-of-plane stress components are determined by using Hooke’s
law with six numerical layers in each ring (see Tahani and Nosier, 2004) and thirty numerical rings in each
physical ring. To check the correctness and accuracy of the present method, the results achieved from this
theory will be compared with those obtained by utilizing the commercial finite element package of ANSYS,
revision 5.4. In the latter method, the mesh is refined till no significant change in stress distributions is
obtained.

The results of the present method and the finite element method are compared for two cases of rotating
disks. In the first case, the disk is clamped at the inner boundary and free at the outer boundary (CF) and in
the second case, the disk is free at the inner and outer boundaries (FF). Fig. 3a and b illustrate the radial
displacement versus r at z =0 in CF and FF rotating disks, respectively. Also the variation of the radial
stress o, at z = h/4 is shown in Fig. 4. It is noted that, as it is expected, the radial stress o, is continuous
at the interface of S-2 glass/epoxy and Kevlar/epoxy rings, but the hoop stress oy at z = /4 as shown in
Fig. 5 is discontinuous at the interface. It can be seen from the figures that very good agreement is obtained
using the mentioned method for both displacements and stresses.

The distributions of the transverse normal stress o at z = 4/4 in CF and FF disks are illustrated in Fig.
6a and b, respectively. It is seen that ¢. is nonzero and discontinuous at the interface. Finally, distributions
of the transverse shear stress o,. at z = h/4 are displayed in Fig. 7a and b. It is seen that both ¢. and o,. have

°F
— 6F
IS F
é 5F
@ F
9 4F
Xk
=) 3,_ Present
2_ —————— FEM
ol M R R B | [ ) S N RS SR
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
(@ (r-RY(RyR) (b) (r-R)(RsR)

Fig. 3. Distribution of the radial displacement at z = 0 in (a) CF disk and (b) FF disk.
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Fig. 4. Distribution of the radial stress o, at z=A/4 in (a) CF disk and (b) FF disk.
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Fig. 6. Distribution of the transverse normal stress . at z = //4 in (a) CF disk and (b) FF disk.
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Fig. 7. Distribution of the transverse shear stress a,. at z=h/4 in (a) CF disk and (b) FF disk.

a large magnitude at the inner radius of the disk where there is a fixed boundary condition. Also far away
from the material discontinuity in the outer ring it can be seen that the out-of-plane stresses vanish as it is
expected. The current solutions are seen to closely match the finite element solutions in all regions.

5. Conclusions

Deformations and stresses in rotating annular disks composed of cylindrically orthotropic nested rings
are determined by using a layerwise plate theory (LWT). It is assumed that the circular plate rotates with a
constant angular velocity. Numerical results are obtained in a clamped-free and a free—free rotating disk
made of two nested circumferentially wound rings. The accuracy and effectiveness of the present theory
in describing the localized three-dimensional effects are demonstrated by comparing the results of the
LWT with those obtained by a finite element method. The results indicate that the stress field is three-
dimensional in regions close to the sudden transition of material properties and must be considered in
design of such structures with this kind of discontinuity. The method could serves as a useful tool in the
analysis of a material discontinuity in an initial design situation.

Appendix A

The coefficient matrix [4]" and vector {F}" appearing in Eq. (24) are defined as

0] (71 [0] [0] {0}
la] [a2] [as] ad] {as}
A (m) — , F (m) —
4 0] [o] [o] [ ) {0}
(D] [bo]  [bs] (B4 {0}

where [0] and [/] are (N + 1) X (N + 1) square zero and identity matrices, respectively, and {0} is a zero vec-
tor with N + 1 rows. The remaining matrices in the above equations are as follows:

= 00 (5 1Dl + s~ o7 + )

m
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[aa] = ——=11]

m

las] = L [Du] " ([Bas] — [B1))

m

las] = [Du] ™ ([Bss]" — [B1s])

{as} = (D] {T}rpe?

b1] = L D (] — [Bs))

m

[b2] = [Dss] ' ([B1s]" — [Bss])

[bs] = [Dss] " ([33] + [«])

bl = — L

where [I] and {I} are the matrix and vector of mass terms defined in Eq. (12). Also, the coefficient matrix
[B]"™ appearing in Eq. (29) is defined as

] (0 [0 [o]
[B] (m) [0] [O} []} [O]
- Do) (Dol (B 0]

[Bss] 0] [0] [Dss]

The coefficient matrices in Eq. (30) are defined as follows:

(c]™ = [B™ U™ [Q (rm . %m)] (m)

[C]“”“) _ [B](n1+1)[U](m+l) |:Q(rm+l _ tm;)}(mm

(DY = (B (4] )" {F

{D}(m+1> _ [B](m+1>([Arl)(mﬂ){F}(mH)
The coefficient matrices in Eq. (31) are given by
NEINRIN N
(T} =AY+ 1S ATH 5] S) ) [5] 2 T)
The coefficient matrices appearing in Egs. (36a) and (36b) are defined as

(1] [0} [o] [0]

1 _
B =10 0w o
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[BC)™ = % [Dw] [Du] [Bi] (0]
[Bss] [0] [0] [Dss]

References

Arnold, S.M., Saleeb, A.F., Al-Zoubi, N.R., 2002. Deformation and life analysis of composite flywheel disk systems. Composites Part
B: Engineering 33, 433-459.

Bert, C.W., 1975. Centrifugal stresses in arbitrarily laminated, rectangular-anisotropic circular discs. Journal of Strain Analysis 10 (2),
84-92.

Christensen, R.M., Wu, E.M., 1977. Optimal design of anisotropic (fiber-reinforced) flywheels. Journal of Composite Materials 11,
395-404.

Durodola, J.F., Attia, O., 2000. Deformation and stresses in functionally graded rotating disks. Composite Science and Engineering
60, 987-995.

Foral, R.F., Newhouse, N.L., 1980. On the performance of hoop wound composite flywheel rotors. In: Flywheel Technology
Symposium, Scottsdale, AZ.

Fung, Y.C., 1965. Foundations of Solid Mechanics, first ed. Prentice-Hall, Englewood Cliffs, NJ.

Genta, G., Gola, M., 1981. The stress distribution in orthotropic rotating disks. Journal of Applied Mechanics 48, 559-562.

Gurushankar, G.V., 1975. Thermal stresses in a rotating nonhomogeneous, anisotropic disk of varying thickness and density. Journal
of Strain Analysis 10, 137-142.

Herakovich, C.T., 1998. Mechanics of fibrous composites. Wiley, New York.

Jain, R., Ramachandra, K., Simha, K.R.Y., 2000. Singularity in rotating orthotropic discs and shells. International Journal of Solids
and Structures 37, 2035-2058.

Lekhnitskii, S.G., 1981. Theory of elasticity of an anisotropic body. Mir Publishers.

Nosier, A., Kapania, R.K., Reddy, J.N., 1993. Free vibration analysis of laminated plates using a layerwise theory. AIAA Journal 31
(12), 2335-2346.

Reddy, T.Y., Srinath, H., 1974. Elastic stresses in a rotating anisotropic annular disk of variable thickness and variable density.
International Journal of Solids and Structures 16, 85-89.

Tahani, M., Nosier, A., 2004. Accurate determination of interlaminar stresses in general cross-ply laminates. Mechanics of Advanced
Materials and Structures 11 (1), 67-92.

Timoshenko, S.P., Goodier, J.N., 1970. Theory of Elasticity, third ed. McGraw-Hill.

Tutuncu, N., 1995. Effect of anisotropy on stresses in rotating discs. International Journal of Mechanical Sciences 37 (8), 873-881.

Tutuncu, N., 1998. Interlaminar thermal stresses in polar-anisotropic circular plates. Journal of Reinforced Plastics and Composites 17
(11), 1024-1035.



	Deformation and stress analysis of circumferentially fiber-reinforced composite disks
	Introduction
	Theoretical formulation
	Displacement field and strains
	Equations of motion

	Semi-analytical solutions
	Numerical results and discussions
	Conclusions
	Appendix A
	References


